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Abstract

We identify mechanisms for particle transport across a cross-field sheath. We present

a study of E x B drift motion in a vortex in which the ion drifts are perturbed by their

finite gyroradii and electron drifts are perturbed by one or more traveling waves. Large

scale vortices, which are the result of nonlinear saturation of the Kelvin-Helmholtz

instability resulting from shear in the E x B drift velocity, have been observed in plasma

simulations of the cross-field sheathb- 3 . Small scale turbulence is also present, and ions

and electrons are transported across the sheath. A vortex alone does not allow for
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the observed electron transport because the electron drift orbits simply circulate. On

the other hand, the ion motion can be stochastic from resonant interaction between

harmonics of the the drift motion and the gyromotion, independent of the background

turbulence. The fluctuations in the ion density would then give rise to small amplitude

wave spectrum. The combined action of the vortex fields and traveling wave fields

on the electron motion can then lead to stochastic electron diffusion. We study these

effects, showing that the values of vortex fields observed in the simulation are sufficient

to lead to both ion and electron stochasticity. Furthermore, the rate of the the resulting

diffusion is sufficient to account for the diffusion observed in the simulation.

1 Introduction

In previous studies of the cross-field sheath, the Kelvin-Helmholtz (K-H) instability is found

to saturate into large scale vortices, and in addition to the circular vortex flow, there is a

bigger amplitude, small scale turbulence 1 3 . The driving mechanism for the K-H instability

is the E x B sheared flow that occurs due to nonuniform electric fields in the sheath near a

conducting, absorbing wall. With the magnetic field taken parallel to the wall, the electric

field is due to the weaker magnetization of the ions relative to the electrons, causing a net

positive wall charge. This electric field is nonuniform (large at the wall, becoming small in

the plasma), which causes a significant velocity shear; the mean velocity is v0 - 2VTi, where
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vri is the ion thermal velocity, and the shear length is L, - 5 pi, where pi is the thermal ion

gyroradius. A characterization of the physical system is shown in Figure 1. Our objective in

this paper is to understand how the vortices observed in the previous Refs. 1-3 can provide

mechanisms for transport. The calculation presented here may be relevant to K-H vortices

driven by other mechanisms as well. 4 s

There has been considerable research on chaotic single particle motion in plasmas, in

which chaos in phase space has been generated by the resonant interaction of the particle

gyration with magnetic field spatial periodicities 6 , , with periodic time varying fields8'9 ,

and with waves10 1 1. The resonant mechanism for the generation of the stochasticity and

the resulting particle diffusion is the overlap of neighboring harmonic resonances in the

action space as reviewed in Refs. 12 and 13. There has also been interest in stochastic

E x B motion and its role in transport due to drift waves both when the stochasticity

is caused by an interaction of one or two waves 14 - 16 or when the wave spectrum itself is

turbulent 17,18 19. Our work is in the same spirit as Refs. 14-16, but our physical system,

and associated Hamiltonian are quite different.

We postulate that the basic driving mechanism for the transport is the following. The

nonlinear E x B motion within the vortices generate harmonics of the vortex frequency

that resonate with the ion gyrofrequency. These harmonic resonances generate secondary
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resonances whose interaction make the ion motion stochastic. The resulting interception of

ion orbits by the walls leads to macroscopic charge fluctuations that generate a wave spec-

trum. The waves, in turn have frequencies that resonate with the E x B drift frequency of

the vortex motion of the electrons to produce stochasticity and therefore electron diffusion.

The sheath physics is therefore of key importance in setting up a nonuniform electric field,

which leads to vortex flow and therefore a frequency spectrum associated with the vortex

motion.

Although the driving terms for generating the stochasticity proceed from ions to elec-

trons, the electron dynamics are easier to treat, so we reverse the order of presentation.

In Part I, we concentrate on the electron E x B motion, which is also applicable to the

zero order ion drift motion. In Section 2, we develop the interaction equations between an

applied vortex field and one or more wave fields. In Section 3, we study orbits obtained

from numerical integration of the equations of motion. We show results using single and

multiple waves, and compare with the analytic predictions. We also show the importance

of the edge velocity shear. In Section 4, using a resonance overlap criterion, we calculate

how large the perturbing wave needs to be to cause large scale stochasticity.

In Part II we consider the interaction of the finite ion gyromotion with the vortex. In

Section 5, we introduce the interaction Hamiltonian and the appropriate transformations.
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The numerical interactions and comparison with theory are presented in Section 6. In

Section 7 we again use the overlap criterion to determine the parameter region for large

scale stochasticity. In Section 8 we calculate and measure the diffusion coefficient arising

from the ion stochastic motion, and compare it to a simulation of the ion motion in a applied

vortex field.

We emphasize t".at these calculations are not self-consistent as both the vortex field

and the wave field are imposed. However, the amplitudes of those fields are taken from

the self-consistent simulations, and the results of the calculations show electron and ion

diffusion consistent with the observed self-consistent diffusion. Thus, we believe that these

calculations uncover the mechanisms operating to produce the self-consistent diffusion.

Part I

2 Electron Drift Motion Interacting with Traveling Waves

In all calculations we will use the configuration specified in Refs. 1-3 which is given in Figure

1. The magnetic field B is constant and perpendicular to the x-y plane (parallel to the wall),

and the electric field E is in the x-y plane. We assume that the time dependent variation of

the electric field is much smaller than the electron cyclotron frequency (w < w,). In Part I



we also assume that all the field spatial scale lengths are much bigger than the electron

gyroradius (-Pe ' 1). Hence, in this section we can use the zero order drift equation for

the motion of the electrons

ExB(1
V -B 2

This is also applicable to the zero order ion drift motion. However, as will be discussed in

Part II, finite gyroradius and gyrofrequency effects are also important for ion motion in the

vortex. Written out in component form, in terms of the potential defined by E = -Vk, we

see that Eq. (1) is in Hamiltonian form with x being the canonical momentum and y the

position,

1 0l= Ba y' (2)

ay
- 49-Pz (3)

where t plays the part of the system Hamiltonian. For 4) independent of time, the particles

follow the equipotential contours 4)(x, y) = 4t [x(t = 0), y(t = 0)].

We now study the particle motion in a time dependent electrostatic potential given by

4(z,y,t)= -Byvo - aoj + y-r 2 (4)

+ C1E A.e'(k" v - t),

where vo is the drift velocity of the vortex and L, is the velocity shear length. The potential
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has a magnitude 4o and a "shape function" iP specifying the shape of the vortex equipo-

tentials that specifies the vortex flow; a and 3 specify the elongation in the x, y directions.

Defining -Y -f, then -y and e are dimensionless parameters specifying the strengths of

the vortex and waves, respectively. The elliptical shape for the zero order contours in Eq.

(4) was assumed: (1) because of reasonable comparison with results 2,3; (2) for clarity and

ease of the calculations. The results presented below can be used for other closed contour

shapes. A contour plot of Eq. (4) is shown in Figure 2 with Gaussian 0(u) = e- ', with

B = 1, and the dimensionless parameters the same as used in the simulation 2,3 -y = 2.5,

a = 1.25, 3 = 3.83, v0 = 0.44VTi, pAIL, = 0.8, and kpi = 3.83. We note that in the

simulations pi and vt, are routinely set equal to one, such that the dimensionless quantities

here correspond to the quantities in the simulation.

The notation can be simplified by making the following coordinate transformation to

dimensionless coordinates in a frame moving with the vortex

X
api

y + vot

where fl is the thermal ion gyrofrequency. Dropping the overbars for notational convenience,
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the equations of motion are now

ay'

S - " (6)

with the transformed Hamiltonian

4' (X,Y, t) =-p(X2 + Y 2) + bX2 + ~ ~Eik w~) (7)
n

where 6 = 2-yVT, L8 ' parameterizes the amount of velocity shear. We will assume 6 small;

using the early values produces 6 _ 0.1. The transformed k, 4 in terms of the laboratory

frame k, w, are

kn = knkp, (8)

Dn = O-Q(on + knvo). (9)

Next, we make the transformation from (x, y) coordinates to their corresponding action-

angle coordinates (J, 0), using the partial generating function

1

F1 (y, Oo) 1y cot 0o. (10)
2

The new and old variables are related by

0 aF,S= O"F" (11)

Jo= -- (12)
060
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which after rearranging gives

X = V2"o cos 0o, (13)

y = V2 o sin 00. (14)

For drift motion in a quadratic well, Jo gives the area, divided by 21r, inside the curves of

constant Hamiltonian, and 00 is a uniformly rotating angle. Defining the unchanged wave

phases

on = wn t, n = 1,2,3,...,N. (15)

It is necessary to increase the system's degrees of freedom to keep the angle variables

periodic. We have assumed the waves are independent (no harmonics). We now obtain the

Hamiltonian H = Ho + cH1,

n=N

Ho(Jo, J1,J 2 , ... ,JN) = -t (2Jo) + E cD. Jn, (16)

H,(Jo, Oo, 01,0 2 , ... ,ON) = -2Jo cos2 0o (17)

N /=+00

+ Y A. E JI(k.
n=l1 =-o

where JIB are Bessel functions of integer order, which arise from the expansion of (14) in

the exponent12' 13 . From this form, it is seen that each wave adds one degree of freedom to

the system, but a single wave generates an infinite set of resonances between harmonics of
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the drift frequency and harmonics of the wave frequencies. The second term in Eq. (16)

preserves the canonical form for n > 1. Eqs. (13)-(17) make no reference to the assumed

shape of the vortex contours, beyond the form indicated in (7). Hence, the results here and

following can be generalized to other vortex shapes satisfying this form. In a general case

J0 would be the area inside the closed contour of the potential divided by 27r (with c set to

zero) 16.

For f equal to zero, Jo is a constant of motion and the drift frequency around the vortex

""d is defined by:

Cd = o = 0O(2Jo) (18)
ajo

For small e, we expect resonances when IWd = mwj , where 1, m are integers. If V is

nonlinear, which is the case of interest, then Dd is a function of Jo and there will be many

resonances for a given " ,. These resonances generate islands in the phase space which can

overlap to provide a mechanism for an electron to stochastically change JO, hence providing

a mechanism for transport 6" 3 .

3 Numerical Results for E x B Motion

In the K-H simulations, small amplitude and short scale waves traveling in the y-direction

were observed throughout the simulation ( c < 1, k pi - 1 and , 1 ). In th-s section we
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show how the short wavelength and small amplitude waves can provide a mechanism for

transport. We add a small amplitude wave component to the large scale vortex flow and

study the resulting E x B particle motion. A single wave of appropriate amplitude should be

sufficient to obtain global stochasticity and we concentrate on this case. We again choose:

7I(u) = -e- u, and we neglect velocity shear (b = 0). The potential is then

t(x, y, t)= -exp (- (z2 + Y2)) + f cos(ky -&'t) (19)

In this case, with e = 0, the drift frequency is: Wd = exp(-J). The values for a, 0, and

-y are approximately 1.25, 3.83 and 2.5 for the simulation presented in Refs. [2,3]. In the

norn±i.ized units the maximum drift frequency is: Wb,,ax = 1, which in the laboratory units

is: Wbax = (.) ,,,,, 0.52R. This compares reasonably well to the observed value of

0.5Q [3].

We integrate the equations of motion Eq. (5) and (6), for a set of orbits using the

classical fourth order Runge-Kutta method 20 . The wave potential is given by Eq. (19) with

k = 3.83, LD = 0.96. Our choice of k,iL was made so that kp, = 1 and w was a representative

point from the power spectrum at kp, ;s 1. Fig. 8 in Ref. 3 shows the power spectrum

peaked at wo z -kvo, where vo ;z 0.44 VTi, but is fairly broad at kp, - 1 with a range

between -2w 0 and zero. In Figure 3 we display integrations from a set of initial locations:

xi(i = 0) = 0.05 i and y,(t = 0) = 0 with i = 1,2,...,20. Surface of section plots in (x, y)are
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shown for 1000 periods of the perturbing wave (so that there are 20,000 total points). The

surface of section is defined at constant phase of the wave variable, i.e., when wt = 2nr,

where n integer. If a constant of the motion exists, then it has been generally shown 13 that

x and y will lie on a smooth curve in this surface. If the constant does not exist, then the

trajectory can puncture the surface of section over a two-dimensional area.

We observe the transition between these two types ot behavior in Figs. 3(a) and 3(b).

The plots show the change in character as e is varied over a range consistent with the wave

amplitudes observed in the simulation. (a) e = 0.015, and (b) f = 0.02. In Fig. 3(a) the

motion is mainly confined to smooth curves or bounded in small areas between smooth

curves. The latter regions develop near the separatrices of island chains formed by reso-

nances between the drift motion around the vortex and the drift motion in the wave field.

In these bounded separatrix layers the constant of the motion does not exist, but this has

little effect on the overall dynamics. In Fig. 3(b), the separatrix layers of fieighboring islands

have overlapped to make a broad layer of stochasticity. This is clearly seen in the escape of

trajectories to much larger values of the coordinates. If trajectories intersect sources and

sinks of plasma they would then result in diffusion. We present a quantitative calculation of

diffusion in the next section. Figure 4 is the surface of section plots using the action-angle

coordinates (Jo, 6o) for the e = 0.015 case.
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If we consider that more than one wave is in the perturbing field, the potential would

have the following form

M=M,I(x, y, t) = -epj~z 1 +e~A Q(m-'m m, (0
in=1

We would expect that, for the same overall wave amplitude level, phase decorrelations

might increase the level of stochasticity. As an example, we use four waves (N = 4),

two with positive 7, two with negative D, all having kpi = 1.024, and the amplitudes

representative of the power spectrum given in Ref. 3, Figure 8. The phases Em were chosen

to be random. The parameters used for the four waves n = (1,2,3,4) are: k,, = 4.16,

Dn = (-0.6,-0.3,0.4,0.7), cAn = (0.004,0.006,0.01,0.012), and ,m = (1.1,5.5,3.0,0.0).

Figure 5 shows a surface of section plot, where points are plotted when 4Z4 t = m27r, m =

0, 1, 2,3,... This surface of section is chosen because mode four has the largest amplitude,

so that residual structure can still be seen. The lack of a true surface of section in which to

see regular motion prevents a quantitative comparison with the single wave case, but the

impression is of increasing stochasticity with more than one wave.

We can also investigate the role velocity shear plays in the E x B particle motion. We

do this by adding 6x2 to Eq. (19). The velocity shear permits plasma to flow past and

interact with the vortex. This type of shear is observed in the self-consistent simulations.

The velocity is strongest at the wall and drops off to zero towards the center of the plasma.

13



The form x2 used for modeling the shear only applies up to z = 2L 8 /(ap,), at which point

the drift velocity goes to zero, as can be seen from Eq. (4). The velocity shear and vortex

provide a "snow shovel" mechanism, by which the vortex drifts along the wall and scrapes

off interior plasma which is within the reach of the vortex (- 5p,). This mechanism is

shown in Figure 6, using the example of e = 0.03, an 6 = 0.015 for a single wave. Four test

particle orbits are shown just at the edge of the vortex.

4 Island Formation and Overlap Criterion for Global S-

tochasticity

We begin by studying a single wave. To find out for what range of parameters global (large

scale) stochasticity occurs, we calculate the overlap of the first two integer resonances:

Wsd = D/m, m=1,2. These two resonances are chosen because we are interested in waves

with D dd,ma, and these are the prima.y resonances observed in the simulation results

presented in Section 3. We make a transformation to the slowly varying phase close to

resonance: 00 = moo - 01, and the fast phase of interest: 01 = 01/m. Using the generating

function:

F2(Io, 11; 0o, 01) = (mOo - 01 )1o + 0111 / M,
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we obtain:

Io = Jo/rn, (21)

h = Jo+MJI,

€o = moo-0 1 ,

01 = 01/m.

Which explicitly exhibits the slow phase Oo. The new Hamiltonian is then H = Ho + cH,

where

Ho(Io, I,) = -t(2mo) + C(Ii/m - Io), (22)

H,(Io, 0o, 01) = -2mIo cos2 (Oo/m + 01) (23)

I=+oo
+ 4F E J Zm o)e

1=-a0

and we have taken A1 = 1. Next, we average over the fast phase 01 to obtain:

f = -Vp(2mIo) - Io + 6m1o + FJ!(kv'-Io)e00  (24)

where: H = -i fo"' Hdol. At this point we drop the zero subscript since the the phase

aH O
averaged system is now one dimensional. Setting = , = 0, gives the fixed points,

which are

. = .-L[4 '- - /2m), (25)

4'fpI,2 = (0, r), (26)

15



where we have neglected terms of order e in determining Ifp. We can then expand I =

If p + AI to obtain13 :

AN = G - FcosO (27)
2 l2

where G = 4m27"(2muip), F = -eJ!(kV/TmIfp). The maximum Al is

A .= 2J F [,Enkvm7-p 11/ (28)=[lG - m2iP"(2mzM J(28

As an estimate of the onset of large scale stochasticity we use the "two-thirds rule", which

corresponds to the destruction of the last KAM surface between islands(at K=1 for the

standard map) 13:

AIma(m = 1) + AI,,,(m 2) > 2 (29)
zIp(,, = 2) - If p(m = 1) - 3

To proceed further the vortex shape ip needs to be specified. We use

It

-(U) = e- , (30)

which gives a qualitative fit to the vortex observed in Refs. 2 and 3. Using this shape we

calculate the location of the mth resonance in action space to be at

If, = - 1 ln(,D/m). (31)

Using (30) to calculate ip" in (28), the approximate width of the mth resonance is

AImax = 2 [ Jm( VF fp,) . (32)
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We can now use Eq. (29) with Eqs. (31) and (32) to calculate the critical value for the

perturbation strength:

- ( (D2 ) 2 " 2 J, [] + [ B 2n(/2) ()

The value of c gives an estimate of the strength of the background perturbing wave

which is needed to cause large scale stochasticity. The predicted critical value for the per-

turbation strength obtained using Eq. (33) is: ec = 0.012, which is in reasonable agreement

with the numerical results which show the transition to large stochasticity occurring be-

tween Figs. 3(a) and 3(b). If we assume that e is sufficiently large that the resonance islands

strongly overlap, i.e. (29) is well satisfied, there is good mixing of the particles in the vortex

and we can then estimate the stochastic diffusion coefficient by its quasilinear value

D, = AL2R (34)21r

where fQD is the drift frequency and AL a characteristic diffusion distance in physical

space expressed in dimensional units. We associate AL with the half island size, given in

(32), where AL and AI,,z are related through the transformation equations. Substituting

Eqs. (32), (31) and (18) into (34) we obtain, in dimensional units

D,- 2-/ 'gm(k -2In()) .) (35)

We note that the factor -= p.f restore the dimensionality, but does not imply that D,

17



has Bohm scaling, since the dimensionless factors can also change with this ratio. We will

compare this result with the ion diffusion obtained in Sec II. From Eq. (35) we obtain the

value of the stochastic diffusion coefficient is D. = 0.07 T". It is worth pointing out that

the similar issue has been addressed in a quite different system in which equilibrium and

perturbed states are two dimensional periodic flows with perturbed flow propagating in

y-direction.21

Part II

5 Interaction of the Ion Drift and Gyromotion

Because the gyro-orbits of the ions are comparable in size to the vortex, the drift approx-

imation can no longer be used. Furthermore, the gyromotion adds a second degree of

freedom which allows resonances even in the absence of a wave field. We now consider the

formulation of the ion dynamics including the full gyro and drift motion.

In the uniform magnetic field B0 from the vector potential Ao(y) = -Boyi, the total

Hamiltonian is

H -- IP. + eBoyl 2 + - P2 + e,(X, y, t). (36)
2M 2M Y
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with the electrostatic potential well

t(x, y,t) = -Bovox - l [t ( + ( +-t(37)

Here, vo is the drift velocity of the vortex, 4, f and g are functions specifying the shape of the

vortex. For analysis of ion motion, we concentrate on the motion inside a vortex potential

well and therefore can neglect the velocity shear and the perturbed wave background in

Eq. (37) in contrast to Eq. (4).

As in Part I, we eliminate t by transforming to the frame moving with the vortex velocity

vo: (x, y; px, py) -* (u, v; Pu, P,), with new coordinates in dimensionless units:

X
U = -,Pi

y + Vot

Pi

P - Pz VO

MVTi VTi

MVT VT

H H
T,"

Following the treatment of Smith and Kaufman,' 1 we transform to guiding center coordi-

nates (X,Y) and local polar gyrocoordinates (p,O), (u, v; P., P.) -* (Y, X; 0, PO), by

Y = v+psino, (38)

X = u-pcosO,

19



= tan- 1 ( +v
P.)

= - 2 =;[(P.+v) 2 +P2I.

This transformation allows separation into fast gyromotion and slow drift motion so that

we can use the method of averaging. The Hamiltonian is then

H = PO 7-t[f((X + pcos0) + g(Y - psin)]. (39)

As in Part I, we exhibit this structure by transforming to action-angle-like variables. We

already have the pair (PO, 0) for the gyromotion. The transformation of the drift variables

to (J, 0) follow as in (10). Choosing

X = vN/'cos0, (40)

Y = V/27 sinO.

which is equivalent to Eqs. (13,14). The Hamiltonian becomes:

H = P ,- 4 [f(v cos 0 + pcos 0)+ g(v -sin0-psin 0)]. (41)

6 Numerical Results for Ion Motion

In order to compare with 2d simulation results, we choose two forms of the potential well:

(a), as in Part I,

S( z,y) = -yexp [ + (42)

20



which gives a qualitative fit to the vortex shape with -y = 2.5, a = 1.25 and/3 = 3.75; and

(b),

O [( 2Cos -+ (43)
api api 2 bpi

which gives a qualitative fit to the vortex shape out to the vortex separatrix with a = 1.59,

b = 7.5 and = 0.17. This form allows an analytical calculation of the primary resonances

of all harmonic numbers which we perform in Sec. 7. Figs. 7(a)-(b) plot a 3-d surface and

contours of potential of Eq. (43).

The equations of motion

dYf e6 -e (-V + UxA) (44)
t m

di

dt 
V

which are integrated by a Boris mover. 22 Since the Hamiltonian is independent of time,

its numerical value has been checked and is essentially conserved during the integration.

In order that a surface of section exhibit nonintersecting orbits, we start with all particles

having the same Hamiltonian and vary the initial particle positions and velocities. In

Figs. 8 and 9 we display integration from a set of initial locations on the circle: x, =

roc cos Oo,, y, = roO sin Oo,, vr, = voo cos Oo,, and v1 , = voo sin 9o, with 0o, and 0o, uniformly

distributed between 0 and 27r.

Because of the complexity of the orbits, we visualize the motion both by plotting a
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particle trajectory in physical space and a number of trajectories in the surface of section.

From the particle trajectory, we find the ratio of gyrofrequency Q2 c (where Q, is the in-

dividual particle gyrofrequency with a specific velocity) to the i x J drift frequency Qd

and obtain a qualitative feeling for the dynamics. As in Part I, to determine if an orbit is

chaotic or regular, we generate a two-dimensional surface of section, plotting guiding center

coordinates Y vs X at a particular value of b (0 = 0 is convenient) . This is accomplished

numerically by solving the equations of motion in Cartesian coordinates and calculating v,

at each time step; when v. changes sign (which is equivalent to = 0), we calculate X and

Y according to Eqs. (38).

We first demonstrate the effect of a resonance between a harmonic of the drift motion

and gyromotion for potential form (a), illustrating the "divided phase space" of regular

and stochastic orbits. Since the inflection point of the vortex has zero veiocity shear, most

of the particles in that neighborhood have small shear and therefore the resulting islands

have large amplitude. We therefore take the inflection point r0 = 1.0 as the initial position

and v0o = 0. 7 1VT,. Fig. 8(a) shows a primary 4:1 resonance between the gyrofrequency

and drift frequency of a particlP orbit in configuration space, dearly showing the resonance

of four gyro-orbits to one drift orbit. Fig. 8(b) shows successive intersections of a number

of trajectories with the surface of the section, with the orbit of Fig, 8(a) being one of
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the regular (island) orbits. The upper boundary of the phase space is limited by energy

conservation. The inner space is bounded by KAM curves.

The generic resonance features exist for various potential forms. Figs. 9(a)-(b) show the

metamorphoses of the Y - X surface of section with varying initial position r0 and velocity

voo of the potential form (b). For fixed initial position ro = 0.5, Fig. 9(a) shows that, for

Voo -: 1.55VT,, the motion is regular with a 5-1 resonance inside the potential well and higher

resonances near the separatrix. As we allow voo to increase to 1.70VTj, the islands become

larger with the higher order islands overlapping to become a seed for stochastic orbits,

developing into a stochastic layer surrounding the sepaatrix, as depicted in Fig. 9(b). If

v0o is increased further. vro > 1.95VT,, some orbits can wander out of the vortex cell and

escape. If the initial particle velocities are high enough, then the motion near the center of

the vortex can also be stochastic, as the particle gyroradii are sufficiently large to extend

into the nonlinear part of the vortex potential. For the parameters chosen for potential (b).

particle motion can be stochastic and escape if voo > 2 .72 VT, even with ro = 0 initially.

From Figs. 9(a)-(b), we conclude that the motion becomes stochastic, spreading out from

the separatrix as the velocity increases.
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7 Formation of Islands and arn Overlap Criterion

If the gyromotion and drift motion cannot be separated by averaging, resonances that are

present in the Hamiltonian between gyromotion and harmonics of the drift motion become

important. These resonances lead to islands in the phase space that have their own local

phase space structure. Depending on the dynamics, these resonances may be well separated

or close together. If closed together, then their overlap leads to bands of stochasticity result-

ing in diffusive motion across the vortex. If well separated, the stochasticity may develop

by the interaction of second-order resonances. These resonances are between harmonics of

the primary island oscillation and the funda.mental drift frequency Sld. The analytical treat-

ment of either type of resonance can be performed by the transformation to the resonant

frame, as done in Part I. The new coordinates measure the slow oscillation of the variables

about their values at resonance, which is an elliptic fixed point of the new phase plane.

In the following, we proceed as in previous section to obtain the motion near an elliptic

singular point. We choose the potential well as

)1 )+ (1 - Cos (45)
ap, api 2bp

such that the cosine term has a simple analytic expansion to exhibit the infinite set of

resonances. We transform to the action angle coordinates as in Eq. (40) and use the Bessel
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function identity

0o

exp(iasink)= E JIB(a)exp(ilh), (46)
1=-00

to write the Hamiltonian in a form where the resonances axe explicitly exhibited:

E = P6 - {(V25'cos0 + pcos0)' (47)

V(V cos0 + pcos0)4 + a} + ' Z0 { (2V'0)JB(-3 I)F s.- ; o E E --o2o

+ JB.(-2v"2-J)J(L-)}e("+")
+b

Noting the property of the Bessel function JIB(-X) = (-1)'Ji(x) and JBI(X) = (-1)'JB(x)

we can conclude that the resonances only have significant amplitude when n and I are both

odd or both even. The strongest primary resonsnre has the lowest order Bessel function

for which Qc = mf. Keeping; only I = ±1 and n = ±m terms (where m is odd) the

Hamiltonian which describes the resoaajicz i- 6en by

H ={(-/V2cos0 + pcos0)2 (48)H, = P a2

{(v- cosO + pcos0)4 + a2 J,,(7r vi/)J (-) cos(mO ).
a4  2 2

Transforming to a slow vaiable near resonance by the generating function

F2 = (mO - 4)J + -]P4, (49)

we have the new variables as in (21) for which the slow variable 0 = mO - 4b is explicitly

exhibited.
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Averaging over the rapidly varying angle €, the Hamiltonian becomes

Ht = Q(P4 j)imrj+ L' i(2m j)2 _71(0
a2  8a4 2 2 (50)

- J( Zj )I/7JB (2Y)co~sO

where !f = 1 - -I is the normalized gyrofrequency modified by the vortex potential, and we

have assumed the distance from the center of the vortex to the fixed point R = V > 1.

The location of the fixed points 0fp, jip are determined as in (25) and (26) at =fp 0, ir,

and

2a 2  2

2mJf, = - MI - 1 + -1.51)

The island Hamiltonian about the fixed points J1 p is

A = G(j2p )  )- F(jfp) cos d (52)

where

p2 = -- (2m (53)

F(if p) =- 7 J! (i2mjfp)jB(-)
G(f) -O 2  a4

The island frequency near the stable point is now

Qj = VF(jip)G(Jip) = 3d{ B -7 (54)
ra 2 r b l b
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and the half island amplitude is

F V 2
= 2 G -JR ff,) b (55)

where the drift frequency near the center of the vortex is given by Eq. (18) in the dimen-

sionless units with a = a, and 3 = 2b/ir:

n(56)

We can now calculate the ratio of the sum of the two neighboring island widths and then

apply the overlap criterion as in (29). An alternative procedure, which has been shown to

be equivalent, 13 is to calculate the island frequency, via (54) and then take the ratio to the

next higher frequency, which in this case is £ld. The transition to large scale stochasticity

in the neighborhood of the island is then given by

Q, > -. (57)

f!d - 6

Choosing parameters a = 1.59, b = 7.5, m = 7 and taking a drift orbit near the y-separatrix

R, = V2mj, = 7 from Fig. 9 (calculated R. value from Eq. (51) is smaller as R =

2mJp _ 3.15), we obtain L - 0.12. This value, in fact, underestimates the ratio, as the

local value of Q2d drops rapidly when approaching the separatrix. A more exact calculation

near the separatrix can be performed, but requires more mathematical effort. 13 We here

simply note that the ratio obtained near the separatrix would satisfy (57) if the local value
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of id were used. We can do the same calculation neai the center of the vortex for m - 5,

and R, = V = 2 taken from Fig. 9, to get f = 0.02 The message here is that it is

easy to obtain stochasticity near the y-sepaatrix of the vortex potential structure but the

orbits are mainly regular near the center of the vortex. Comparing these calculations with

the numerical results shown in Fig. 9, we see that the five-island chain has little surrounding

stochasticity, as expected. A significant factor left out in the drift frequency S2d and the

fixed point Jf p calculations is finite gyroradius effects, which should give a critical value of

velocity ( or gyroradius ) for the onset of stochasticity, as we see in Fig. 9.

8 Transport due to Ion Stochastic Motion

The calculation here is motivated by self-consistent simulation results from 2-d bounded

magnetized codes which have indicated that there exists continuous particle transport in a

cross-field plasma sheath with the large scale vortex potential structure. From dimensional

considerations, an estimate of ion stochastic diffusion may be made. During a half gyromo-

tion time rSI-1, the particle is displaced over a distance 2p,, but the motion is correlated

such that after a full gyroperiod it returns almost to its initial position but with a small

displacement. If as a result of the ion gyromotion resonance with E x B drift motion, the

ion motion becomes stochastic on this fast time scale, then the successive displacements are
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independent. A estimate of the decorrelation scale length is an island size. With this scale

length, which is that we used in Part I, the diffusion is

L2d
D a, = d (58)

where LI scales from the island action as

L' = 2mA x (59)

Substituting Eqs. (55) into (59), and (59) and (56) into Eq. (58), we obtain

D. = - V )jB(.)( (60)

where we restore the dimensionality through the factor flp; = " We compare this estimate

with the numerically determined diffusion below. We emphasize here that it is hard to

determine whether the scaling of D, is Bohm-like in Eq. (60) since the parameters a, b, , 

and p probably also change when the factor ?p? = T' changes. We have extracted the

dimensional units t for convenient comparison with the previous simulation studies by

Theilhaber and Birdsall. 3

In order to numerically calculate the convective diffusion coefficient, it is convenient to

modify the potential well with two vortex structures as

{[(-0)2 _(' -04 1"0) ( + 4 +1]H ( -cos -y (61)

ap, ap api api 2 bpi
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where H is the step function. The system is considered confined to a domain -o < z < xo

and -yo < y < yo, where zo = 2.5 and Yo = b. Beyond this domain, values in y are

taken to be periodic. The particles leaving the boundaries at z = ±xO are assumed to

lost to the wall (hence, there is a sink) and reintroduced at x=O, Maxwellian distributed

in velocity and y determined by energy conservation ( hence, there is a source at x=O).

When the system reaches a steady state, the strength of the source is obtained by counting

the particles passing through z = ±zo. The particles are initially randomly distributed in

the range x = 0 and -yo < y < yo and have a Maxwellian distribution in velocity with

temperature Ti. Similar methods were previously used in calculation of effective diffusion

in laminar convective flows 23 and for calculating the diffusion in standard mapping2 4. By

introducing a source at x=O, the effective diffusion coefficient is given by

D P = S/V 2 n S(2xo) 2 /N, (62)

where N is the total number of particles in the simulation region x > 0 and S is the total

number of particles entering at x=0 per unit time from boundary x = xo.

In the numerical calculation, the system evolves for a few gyro-periods to reach a steady

state. Without the vortex potential well, the particles are confined by magnetic field, and

no particles diffuse to the wall. As the amplitude of potential increases, the loss of the

particles increases. Figure 10(a) shows a plot of the number of particles reaching the wall
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as a function of time for -y = 2.5. In this plot, 2500 particles were advanced for 500 gyro-

periods. The total number of particles n(t) escaping is plotted against t, and S is found

to be 3.Q- 1 . In this case, the numerical calculation of single particle trajectories found

D: P - 0.03 --', which is in reasonable agreement with the theoretical estimate given by

Eq. (60) D'h - 0.023e. In the theoretical calculation we have chosen m = 7 and taken a

drift orbit near the y-sepaatrix R, = = - 7 from Fig. 9. Comparing these results

to Theilhaber and Birdsall, 3 they obtain DO- 0.04T, is also in reasonable agreement

with the results here. Again, we point out that the simulation used pi = 1 and VTi = 1, So

that the -* scaling was not checked. Simulations with varying parameters could produce

variations of £ and the size of the vortex in Eq. (60).

In comparing the properties of the surface of section plots given in Section 6 with the

diffusion results, it is necessary to understand the qualitative features of the diffusive motion.

In the surface of section plots, some particles lie on regular orbits inside the vortex well

and other particles diffuse across the separatrix. In that case, we might expect that the

density would be uniform in the interior of the vortex, because of the rapid drift motion,

so that the global density would appear as a steep gradient confined to the sepaatrix

layer. In this case, there would also be a hole in the particle scattering plot in x - y space

which is reserved for regular motion. Fig. 10(b) shows a instantaneous plot of density at
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t = SO - 1. It is interesting to notice that the picture is quite different from that inferred

above. The y-averaged density n varies linearly in x, vanishes at the position about one

thermal ion gyroradius from the wall, as seen in Theilhaber and Birdsall simulation plots .3

This observation enables us to surmise that the motion is stochastic in the whole simulation

region. This may be confirmed in the scattering plot of instantaneous particle position

and velocity in Figs. 10(c)-(d). The particles near the center of the vortex, Ix - 2.5p i !__

0. 5p,, IyI - 0.5p,, are found to have very high velocities v > 3 .OVTi. The motion of particles

at these high energies (very large pi) most likely are stochastic and able to escape. The

increase in kinetic energy of the particles near the bottom of the vortex well is a consequence

of the stochastic motion, allowing individual particle to cross to lower potential regions. As

the total particle energy is conserved, the consequence is an increase in kinetic energy and

gyro-orbit size near the well center which maintains the the stochasticity.

It is worth pointing out that during the simulation we observe that some particles are

trapped near the source region. Thus, some fraction of the particles reintroduced at x = 0

as source particles have a chance to be trapped. But, compared with the stochastic flow, the

relative number of trapped to escaping particles is small. By comparing particle scattering

plots and y-averaged density plots at t = 250f - 1 and t = 10000 - 1, we confirm the approach

to quasi-steady-state diffusive flow.
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Finally, we note that the fully developed stochasticity in a single wave found in Part

I, gives an estimate for the diffusion coefficient of D, = 0.07T". This is sufficient to allow

electrons to diffuse across the sheath region at a rate equal to that of the fully developed

ion diffusion to preserve ambipolarity.

9 Discussion and Conclusions

Particle simulation of motion in a plasma sheath with a magnetic field perpendicular to the

electric field indicates there is quasi-steady-state consisting of vortex flow on the scale of

the sheath dimension and a small amplitude wave spectrum with characteristic wavelength

of the order of the ion gyroradius. There is a continuous transport of electrons and ions

through this sheath, even in the absence of collisions, from the plasma source to the sink

at the material wall.

We have investigated the mechanism for the transport by breaking up the problem

into two non-self-consistent parts, and showing that they can combine to transport both

ions and electrons across the sheath. The primary driving mechanism is the resonance

interaction of harmonics of the vortex frequency with the ion gyrofrequency which leads

to stochastic diffusion. For the parameters of the vortex size and strength, and the self-

consistent ion temperature, the numerical integrations of single particles in this field shows
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that the stochastic motion transports ions across the sheath at a rate in good agreement

with that found in the simulation.

Because ti. e and space scales are not well separated, analytic techniques using secular

perturbation theory are not sufficiently accurate to quantitatively calculate the stochas-

ticity and resultant diffusion. They do, however, uncover the basic mechanisms of island

formulation and destruction, which are illustrated by surface of section plots of the single

particle motion. Simple analytic estimates of the diffusion rate, employing the concepts of

diffusion theory from situations in which the scales are better separated, give reasonable

estimates of the transport rate.

We expect that the stochastic ion motion and the resulting interception of ion orbits with

walls would lead to macroscopic charge fluctuation that generate a wave spectrum. Indeed

these charge fluctuations and waves are seen in the simulation. Without inquiring into

the details of the spectrum, we show that even a single wave, of the frequency and wave

number corresponding to the peak observed amplitude, is sufficient to resonate with the

E x B motion of the electrons in the vortex to generate large scale stochasticity. Additional

waves, at the same overall amplitude level, tend to make the stochasticity more uniform with

the same general rate of transport. For E x B motion with one single small amplitude wave

there is better quantitative comparison of the analytic methods with the single particle
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numerical integrations. This is because the wave frequency is a true constant of motion

which made the system well suited for the analytic methods used. We have presented these

comparisons and shown the agreement to be reasonable. The transport rate is found to be

sufficient to account for electron loss at the same rate as the ions, and thus no additional

ambipolar effects need be postulated.

The parameters explored in our study were chosen with the guidance of the simulations,

in which these parameters were self-consistently generated. Significant reduction of the self-

consistent perturbation parameters or of the gyroradius led to considerably less stochasticity

and consequently less diffvs: )n. This also may give additional insight into the self-consistent

problem, as it in _a es that the wave strength builds up until ambipolarity is just satisfied.

The fact that our scaling with T" (pi and VTO) in Eq. (60) is only Bohm-like for fixed

ek, -, and , dose not mean that an investigation of the scaling in the simulation would

not give Bohm-like results; i.e., as parameters Ti and B change in the simulation, quantities

a and b (the ratioes of the vortex size to the gyro-radius) could either remain constant

or change in such a way that Eq. (60) would give the Bohm-like diffusion. Our work points

out the need for simulations for a wide parameter range, in order to investigate the scaling,

which could then be compared to the type of calculation we have performed.

The treatment used in this study to determine the transport mechanism and calculate
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the rate of diffusive loss across the sheath region is not self consistent. In fact it is our

ability to independently vary certain parameters and investigate the consequence of the

variation that gives us insight into the transport mechanism. Nevertheless, even within the

conceptual framework of our study, there is a step that has been left out, the determination

of the waves that drive the electron transport. An approach to this problem is a non-self-

consistent Fourier analysis of the ion charge fluctuations within the context of ion stochastic

motion and transport. However, since the fluctuations can both affect the ion motion and

be affected by the electron motion, it is not clear that the resultant fluctuation spectrum

will closely approximate the self-consistent one. In any case, such a study takes us beyond

th- framework of this paper, and we leave it for future work.
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Figures

Figure 1: Characterization of the physical system of interest. A large scale coherent

circular flow (or vortex) interacting with small amplitude traveling waves.

Figure 2: Contours of the potential, Eq. (4) with iP(u) - e - , with B = 1, - 2.5,

= 1.25, 0 = 3.83, v00 = 0.5vTi, pi/L. = 0, and kpi - 3.83. These parameters are

chosen to compare to the results in Refs. 2 and 3.

Figure 3: Plot of (x,y) when alt = 27rn, n = 1,2,3,... (a) e = 0.015, (b) e = 0.02.

Figure 4: Action angle coordinate surface of section plot for the c = 0.015 case. Plot

of (Jo, 0o) when wt = 27rn, n = 1,2,3,...

Figure 5: Surface of section plot with four waves. Plot of (x, y) when C4t = 2 rn,

n = 1, 2, 3,...

Figure 6: Four test particle orbits are shown just at the interior edge of the vortex

with velocity shear 6 = 0.015.

Figure 7:(a) Perspective plot of the potential surface, Eq. (43) with CT =- =yg

V[( .) 2  
- (E) 4 + 1(1 - cos )j with -t = = 2.5, a = 1.59, b - 7.5 and = 0.17.

(b) conto, ,lot of tP(z, y) in (a).

39



Figure 8: Plots for potential, Eq. (42). The vortex center is located at x = 0 and

y = 0. (a) Surface of section for N=12 particles, ro = lp,, voo = 0. 7 1VT and -Y = 2.5;

(b) Single particle orbit for one set of the 4-islands in (a).

Figure 9: Plots for potential, Eq. (43). The vortex center is located at x = 0 and

y = 0. (a) Surface of section for N = 20 particles, ro = 0.5pi, voo = 1.55vT,, and

= 2.5; (b) Surface of section for N = 20 particles,r0 = 0.5p,, -- 1.TvT, and

-y = 2.5.

Figure 10: Typical plots for diffusion measurement. The vortex center is located at

x0 = 2.5pi, y = 0, the source at x = 0 and the sink at x = 5.Op,. Here, 2500 particles

are advanced in advanced in time by 500Q- 1. (a) Number of particles N, escaping

the region 3z4 > 2xo plotted against time t. Instantaneous plots at t = 5002-1: (b)

Profile of the y-averaged ion density; (c) ion scatter plot; (d) ion velocity plot.
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